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QUESTION 1. (6 points) Let G(V, E) be a graph of order 6, where V = {3,5,6,9, 10, 12}. For every a,b € V,
a — bis an edge of G iff (ab) (mod 15) = 0.

(i) By drawing the graph, convince me that G is a complete bipartite graph.
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(ii) Is G Hamiltonian? if no, explain. If yes, construct such Hamiltonian cycle.
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(iii) Is G an Eulerian? if no, explain. If yes, construct an Eulerian circuit.
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QUESTION 2. (6 points) Let G be a connected graph.

(i) Assume G is of order 2023 and size 2022. Let a, b be two vertices of G. How many paths are there between

a, b? Explain. i P a}“ls
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(ii) Assume G is order 12 and size 11. Given that G is a complete bipartite. What is the degree of each vertex?
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(iii) Assume G is complete of order 104. How many edges does G have? i.e., what is the size of G?
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QUESTION 3. (6 points) Let G(V, E) be a graph of order 5, where V = {2,3,4,9, 15}. For every two vertices
a,beV,a—bisanedgeiff (ab) (mod 6) = 0.

(i) Is G bipartite? If yes, draw it. 2’ l‘
Ves %K
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(ii) Convince me that G is neither Hamiltonian nor Eulerian? {( {:,— 5 Ja;;arh}-f FF i} hes po odd (ydfj )
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(iii) By contruction of trail(path), convince me that G is an Euler trail and a Hamilton path.
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QUESTION 4. (6 points) Stare at the below graph. Use Dijkstra’s Algorithm (as explained in class) and construct
the minimum spanning tree, i.e., finding the minimum weighted path between every two vertices.
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/" QUESTION 5. (6 points) Let z be your score on an exam out of 77, i.e., 0 < z < 77. Given z (mod7) =3 and
z (mod 11) = 7. Use the CRT and find the value of z.
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QUESTION 6. (8 points) — — e g e

(1) The digits 0, 1,2, 3, ..., 9 are used to construct 8-digits ID-cards (note that 10 digits are available, i.e.,
from 0 to 9). If repetition is allowed, exactly 3 digits are 2, and exactly two digits are 5; how many ID-cards
can be constructed?

t/' ECZXsczx

(ii) Out of 21 available persons (11 males and 10 females), a committee with 9 persons is formed. Assume that
f1s f25 -+, f10 are the names of the females and my, my, ..., m; are the names of the males. If fg, fo, fio, and
exactly 4 males must be in the committee, in how many different ways can we form such a committee?

L/ 1 Cy x 7(:2

(iif) What is the minimum : number of chocolate bags that can be distributed over 32 schools so that a school will
have at least 19 ba; bags of chocolate? r n

F -9 = N 232x1511 8722

(iv) There are 920 positive integers such that each integer is of form 6k for some integer k € Z. Then there are

at least m integers out of the 920 numbers, say, ny,...,n, such that n; (mod 9) = ny (mod 9) = --- =
v O C nm (mod 9). What is the best value of m?
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QUESTION 7. (6 points) Let f : [2,00[ — | — 00, 0] be a function such that f(z) = —vz — 2.

(i) By drawing, is f one-to-one and onto? '
Ves
-\ ?
(ii) If the answer to (i) is yes, find the domain and the co-domain of f(z), then find f~!(z).

A0 J0,0] o [200]

- 2
, W e f (x) =271+ 12
V2

Aioy -2 > Yo 12
QUESTION 8. (6 points) Use math induction and prove that 14 | (132" — 1) for every positive integer n > 1.
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QUESTION 9. (6 points)

(i) Let A = {2,4,5,7}. Define ” = ” on A such that for every a,b € A, a” = ”b iff b = ak for some integer
k # 0. Convince me that ” = is not an equivalence relation.
a:2, b-H4 and ] € 2%
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(ii) Let A = {2,-2,7,-7,9,-9,11}. Define ” = ” on A such that for every a,b € A4, a” = "b iff b = ak for
some integer k # 0. Then ” = ” is an equivalence relation. Find all distinct equivalence classes.
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QUESTION 10. (6 points) Let a,, = 2a,—; + 35a,-» + 24(3"). Find a general formula for a,,, no need to find

Ci,C2.
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QUESTION 1. (6 points) Let G(V, E) be a graph of order 6, where V = {3, 5,6,9, 10, 12}. For every a,b € V,
a — bis an edge of G iff (ab) (mod 15) = 0.

(i) By drawing the graph, convince me that G is a complete bipartite graph.
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(ii) Is G Hamiltonian? if no, explain. If yes, construct such Hamiltonian cycle. J 7 "
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(iii) Is G an Eulerian? if no, explain. If yes, construct an Eulerian circuit.
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QUESTION 2. (6 points) Let G be a connected graph.

(i) Assume G is of order 2023 and size 2022. Let a, b be two vertices of G. How many paths are there between

a, b? Explain. P
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(iii) Assume G is complete of order 104. How many edges does G have? i.e., what is the size of G? LAt
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QUESTION 3. (6 points) Let G(V, E) be a graph of order 5, where V = {2,3,4,9, 15}. For every two vertices
a,beV,a— bis anedge iff (ab) (mod 6) = 0.

(i) Is G bipartite? If yes, draw it.

2 g T
\ L I P R
o 2. Nes, , &G v brpartite 29 1% 3 3
t/ ‘!} p ~‘), \? \ ‘:f/

(ii) Convince me that G is neither Hamiltonian nor Eulerian?
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(iii) By contruction of trail(path), convince me that G is an Euler trail and a Hamilton path.
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QUESTION 4. (6 points) Stare at the below graph. Use Dijkstra’s Algorithm (as explained in class) and construct
the minimum spanning tree, i.e., finding the minimum weighted path between every two vertices.
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”r/}( \’L%UESTION 5. (6 points) Let z be your score on an exam out of 77, i.e., 0 < z < 77. Given z (mod 7) = 3 and
[< 4 z (mod 11) = 7. Use the CRT and find the value of z.
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QUESTION 6. (8 points)

MTH 213, Spring 2023
(i) The digits 0, 1,2, 3

can be constructed?
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from O to 9 ). If repetition is allowed, exactly 3 digits are 2, and exactly two digits are 5; how many ID-cards
A Uy Ao

9 are used to construct 8-digits ID-cards (note that 10 digits are available, i.e
2 bwo 4 26 we
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(ii) Out of 21 available persons (11 males and 10 females), a committee with 9 persons is formed. Assume that
, f10 are the names of the females and m, m;,
U//uueoumzr
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,mq; are the names of the males. If fg, fo, fi0, and
exactly 4 males must be in the committee, in how many different ways can we form such a committee?
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(iii) What is the minimum number of chocolate bags that can be distributed over 32 schools so that a school will
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(iv) There are 920 positive integers such that each integer is of form 6k for some integer k € Z. Then there are
at least m integers out of the 920 numbers, say, ny,...,n, such that m (mad 9) = ny (mod 9) =
nm (mod 9). What is the best value of m?
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QUESTION 7. (6 points) Let f: [2,00[ = ] — 00,0] be a function such that f(z) = —vz — 2
(i) By drawing, is f one-to-one and onto?
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(ii) If the answer to (i) is yes, find the domain and the co-domain of f(z), then find f~'(z)
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QUESTION 8. (6 points) Use math induction and prove that 14 | (13(3") — 1) for every positive integer n > 1
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QUESTION 9. (6 points)
(i) Let A = {2,4,5,7}. Define ” = ” on A such that for every a,b € A, a” = "b iff b = ak for some integer
k # 0. Convince me that ” = ” is not an equivalence relation.
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(i) Let A = {2,-2,7,-7,9,-9,11}. Define ” = ” on A such that for every a,b € A, a” = "b iff b = ak for sl oo
some integer k # 0. Then ” = ” is an equivalence relation. Find all distinct equivalence classes.
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QUESTION 10. (6 points) Let a, = 2a,,—1 + 35a,,—2 + 24(3™). Find a general formula for a.,, no need to find
C1,C.
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